

MODULE SPECIFICATION

Module Code:	ENG764		
Module Title:	UAS Sensor Te	chnology	
Level:	7	Credit Value:	20
Cost Centre(s):	GAME	JACS3 code:	H430

School:	Applied Science, Computing & Engineering	Module Leader:	R.Bolam	
		•		
Scheduled learning and teaching hours				40 hrs
Guided independent study			1	60 hrs
Placement				0 hrs
Module duration (total hours)			2	00 hrs

Programme(s) in which to be offered (not including exit awards)	Core	Option
MSc Unmanned Aircraft System Technology		

Pre-requisites	
N/A	

Office use only

Initial approval:	19/06/2018	Version no:2
With effect from:		
Date and details o	of revision:	Version no:

Module Aims

- To gain a knowledge of flight control and payload / mission sensor technology at a conceptual and working level.
- To be able to specify and select a suitable sensor technology and sub-system components suitable to a particular UAV mission application.
- To gain a knowledge of optical metrology, photogrammetry and 3D imaging techniques in the context of UAV operations.

Intended Learning Outcomes

Key skills for employability

- KS1 Written, oral and media communication skills
- KS2 Leadership, team working and networking skills
- KS3 Opportunity, creativity and problem solving skills
- KS4 Information technology skills and digital literacy
- KS5 Information management skills
- KS6 Research skills
- KS7 Intercultural and sustainability skills
- KS8 Career management skills
- KS9 Learning to learn (managing personal and professional development, selfmanagement)
- KS10 Numeracy

At the end of this module, students will be able to Key Skills				
	Demonstrate a conceptual understanding of flight control and payload / mission sensor technology and be able to critically	KS1 KS5	KS3 KS10	
1	evaluate current research and advanced scholarship in this area.	KS6		
	Deal with the complex issues associated with the	KS1	KS3	
2	specification and selection of suitable sensor technologies	KS4	KS10	
2	and sub-system components for a particular UAV mission application.	KS5		
3	Demonstrate a comprehensive understanding of the	KS1	KS4	
	techniques required to make calculations relating to	KS3	KS8	
	coherence, Lasers, IR and UV sensors and ultra-sonic transducer technologies.	KS10		
	Evaluate the methodologies and develop critiques relating to	KS3	KS4	
4	digital images. Time-of-Flight imaging and stereo vision systems for depth perception and 3D imaging.	KS6	KS8	
		KS9	KS10	
Transferable skills and other attributes				
1. Communication				
2. ICT Technologies				
3. Time management and organisation				
4. Interpersonal skills				
5. Problem solving				
6. Information handling including numeracy				

Derogations

Credits shall be awarded by an assessment board for those Level 7 modules in which an overall mark of at least 50% has been achieved with a minimum mark of 40% in each assessment element.

Assessment:

Indicative Assessment Tasks:

Assessment 1: An examination covering learning outcomes 1, 2 and 3.

Assessment 2: An essay critically evaluating methodologies relating to digital images. Timeof-Flight imaging, stereo vision systems for depth perception and 3D imaging.

Assessment number	Learning Outcomes to be met	Type of assessment	Weighting (%)	Duration (if exam)	Word count (or equivalent if appropriate)
1	1,2,3	Examination	50	2 Hours	
2	4	Essay	50		2,500

Learning and Teaching Strategies:

The module will be delivered through lectures, tutorials and student-driven investigative work assisted by the use of computer based design and simulation software such as MATLAB and SIMULINK. Relevant video material and practical demonstrations will be used to strengthen topics from within the module.

Syllabus outline:

Flight Control Sensors

The measurement of altitude, airspeed and ground speed using pitot-static sensors, radio transmissions and GPS. Inertial Measurement Units (IMU), magnetometers and Micro-Electro-Mechanical Systems (MEMS) technology. Limitations and comparisons of GPS and locally sensed positional data. Controlling positional path accuracy in waypoint flying. FPV flying, The concept of digital images. Time-of-Flight imaging and stereo vision systems for depth perception and 3D imaging. Use of telemetry for UAV systems and the integration of control and payload / mission data systems.

Payload / Mission Sensors

Data capture, logging and transmission systems. The electromagnetic spectrum, the concept of coherence, Lasers, IR and UV sensors and ultra-sonic transducer technologies. Optical measurement techniques: photography, holography, TV holography, Interferometry, LIDAR systems, LASER triangulation and applications of commercially available 3D imaging software.

Indicative Bibliography:

Essential reading

Zhang, S. (2013) Handbook of 3D Machine Vision: Optical Metrology and Imaging (Series in Optics and Optoelectronics). CRC Press.

Other indicative reading

Gonzalez, R.C. & Woods, R.E. (2008) *Digital Image processing*, 3rd *Edition*. Pearson.

De Silva,W.D. (2016) Sensor Systems: Fundamentals and Applications. CRC Press.

Vepa, R. (2016) Nonlinear Control of Robots and Unmanned Aerial Vehicles: An Integrated Approach.CRC Press